REPAIRING AND NOT THROWING AWAY

Richtige Fernseher haben Röhren!

Richtige Fernseher haben Röhren!

In Brief: On this site you will find pictures and technical information about Service Modes, Circuit Diagrams, Firmware Update procedure, Disassemble procedure, Universal remote control set-up codes, Troubleshooting and more....

If you go into the profession, you will obtain or have access to a variety of tech tips databases HERE IT IS Master Electronics Repair !.

These are an excellent investment where the saying: 'time-is-money' rules. However, to learn, you need to develop a general troubleshooting approach - a logical, methodical, method of narrowing down the problem. A tech tip database might suggest: 'Replace C536' for a particular symptom. This is good advice for a specific problem on one model. However, what you really want to understand is why C536 was the cause and how to pinpoint the culprit in general even if you don't have a service manual or schematic and your tech tip database doesn't have an entry for your sick TV or VCR.

While schematics are nice, you won't always have them or be able to justify the purchase for a one-of repair. Therefore, in many cases, some reverse engineering will be necessary. The time will be well spent since even if you don't see another instance of the same model in your entire lifetime, you will have learned something in the process that can be applied to other equipment problems.
As always, when you get stuck, checking out a tech-tips database may quickly identify your problem and solution.In that case, you can greatly simplify your troubleshooting or at least confirm a diagnosis before ordering parts.

Happy repairing!
Today, the West is headed for the abyss. For the ultimate fate of our disposable society is for that society itself to be disposed of. And this will happen sooner, rather than later.

How to use the site:

- If you landed here via any Search Engine, you will get what you searched for and you can search more using the search this blog feature provided by Google. You can visit more posts scrolling the left blog archive of all posts of the month/year,
or you can click on the main photo-page to start from the main page. Doing so it starts from the most recent post to the older post simple clicking on the Older Post button on the bottom of each page after reading , post after post.

You can even visit all posts, time to time, when reaching the bottom end of each page and click on the Older Post button.

- If you arrived here at the main page via bookmark you can visit all the site scrolling the left blog archive of all posts of the month/year pointing were you want , or more simple You can even visit all blog posts, from newer to older, clicking at the end of each bottom page on the Older Post button.
So you can see all the blog/site content surfing all pages in it.

- The search this blog feature provided by Google is a real search engine. If you're pointing particular things it will search IT for you; or you can place a brand name in the search query at your choice and visit all results page by page. It's useful since the content of the site is very large.

Note that if you don't find what you searched for, try it after a period of time; the site is a never ending job !

..............The bitterness of poor quality is remembered long after the sweetness of todays funny gadgets low price has faded from memory........ . . . . . .....
Don't forget the past, the end of the world is upon us! Pretty soon it will all turn to dust!

©2010, 2011, 2012, 2013, 2014 Frank Sharp - You do not have permission to copy photos and words from this blog, and any content may be never used it for auctions or commercial purposes, however feel free to post anything you see here with a courtesy link back, btw a link to the original post here , is mandatory.
All posts are presented here for informative, historical and educative purposes as applicable within fair use. NOTHING HERE IS FOR SALE !

Wednesday, 27 February 2019

BASIC ELECTRONICS THE CAPACITOR

BASIC ELECTRONICS CAPACITOR


Capacitor Colour Codes

Generally, the actual values of Capacitance, Voltage or Tolerance are marked onto the body of the capacitors in the form of alphanumeric characters. However, when the value of the capacitance is of a decimal value problems arise with the marking of a "Decimal Point" as it could easily not be noticed resulting in a misreading of the actual value. Instead letters such as p (pico) or n (nano) are used in place of the decimal point to identify its position and the weight of the number.
For example, a capacitor can be labelled as, n47 = 0.47nF, 4n7 = 4.7nF or 47n = 47nF and so on. Also, sometimes capacitors are marked with the capital letter K to signify a value of one thousand pico-Farads, so for example, a capacitor with the markings of 100K would be 100 x 1000pF or 100nF.
To reduce the confusion regarding letters, numbers and decimal points, an International colour coding scheme was developed many years ago as a simple way of identifying capacitor values and tolerances. It consists of coloured bands (in spectral order) known commonly as the Capacitor Colour Codesystem and whose meanings are illustrated below:

Capacitor Colour Code Table

Colour
Digit
A
Digit
B
Multiplier
D
Tolerance
(T) > 10pf
Tolerance
(T) < 10pf
Temperature Coefficient
(TC)
Black
0
0
x1
± 20%
± 2.0pF

Brown
1
1
x10
± 1%
± 0.1pF
-33x10-6
Red
2
2
x100
± 2%
± 0.25pF
-75x10-6
Orange
3
3
x1,000
± 3%

-150x10-6
Yellow
4
4
x10,000
± 4%

-220x10-6
Green
5
5
x100,000
± 5%
± 0.5pF
-330x10-6
Blue
6
6
x1,000,000


-470x10-6
Violet
7
7



-750x10-6
Grey
8
8
x0.01
+80%,-20%


White
9
9
x0.1
± 10%
± 1.0pF

Gold


x0.1
± 5%


Silver


x0.01
± 10%



Capacitor Voltage Colour Code Table

Colour
Voltage Rating (V)
Type J
Type K
Type L
Type M
Type N
Black
4
100

10
10
Brown
6
200
100
1.6

Red
10
300
250
4
35
Orange
15
400

40

Yellow
20
500
400
6.3
6
Green
25
600

16
15
Blue
35
700
630

20
Violet
50
800



Grey

900

25
25
White
3
1000

2.5
3
Gold

2000



Silver





Capacitor Voltage Reference

  • Type J  -  Dipped Tantalum Capacitors.
  •  
  • Type K  -  Mica Capacitors.
  •  
  • Type L  -  Polyester/Polystyrene Capacitors.
  •  
  • Type M  -  Electrolytic 4 Band Capacitors.
  •  
  • Type N  -  Electrolytic 3 Band Capacitors.

An example of the use of capacitor colour codes is given as:

Metalised Polyester Capacitor

Disc & Ceramic Capacitor


The Capacitor Colour Code system was used for many years on unpolarised polyester and mica moulded capacitors. This system of colour coding is now obsolete but there are still many "old" capacitors around. Nowadays, small capacitors such as film or disk types conform to the BS1852 Standard and its new replacement, BS EN 60062, were the colours have been replaced by a letter or number coded system.
Generally the code consists of 2 or 3 numbers and an optional tolerance letter code to identify the tolerance. Where a two number code is used the value of the capacitor only is given in picofarads, for example, 47 = 47 pF and 100 = 100pF etc. A three letter code consists of the two value digits and a multiplier much like the resistor colour codes in the resistors section.
For example, the digits 471 = 47*10 = 470pF. Three digit codes are often accompanied by an additional tolerance letter code as given below.

Capacitor Tolerance Letter Codes Table


Letter
B
C
D
F
G
J
K
M
Z
Tolerance
C <10pF ±pF
0.1
0.25
0.5
1
2




C >10pF ±%


0.5
1
2
5
10
20
+80-20
Consider the capacitor below:

The capacitor on the left is of a ceramic disc type capacitor that has the code 473J printed onto its body. Then the 4 = 1st digit, the 7 = 2nd digit,
the 3 is the multiplier in pico-Farads, pF and the letter J is the tolerance and this translates to:

   47pF * 1,000 (3 zero's) = 47,000 pF , 47nF or 0.047 uF

 the J indicates a tolerance of +/- 5%
Then by just using numbers and letters as codes on the body of the capacitor we can easily determine the value of its capacitance either in Pico-farad's, Nano-farads or Micro-farads and a list of these "international" codes is given in the following table along with their equivalent capacitances.

Capacitor Letter Codes Table

Picofarad
(pF)
Nanofarad
(nF)
Microfarad
(uF)
Code
Picofarad
(pF)
Nanofarad
(nF)
Microfarad
(uF)
Code
10
0.01
0.00001
100
4700
4.7
0.0047
472
15
0.015
0.000015
150
5000
5.0
0.005
502
22
0.022
0.000022
220
5600
5.6
0.0056
562
33
0.033
0.000033
330
6800
6.8
0.0068
682
47
0.047
0.000047
470
10000
10
0.01
103
100
0.1
0.0001
101
15000
15
0.015
153
120
0.12
0.00012
121
22000
22
0.022
223
130
0.13
0.00013
131
33000
33
0.033
333
150
0.15
0.00015
151
47000
47
0.047
473
180
0.18
0.00018
181
68000
68
0.068
683
220
0.22
0.00022
221
100000
100
0.1
104
330
0.33
0.00033
331
150000
150
0.15
154
470
0.47
0.00047
471
200000
200
0.2
254
560
0.56
0.00056
561
220000
220
0.22
224
680
0.68
0.00068
681
330000
330
0.33
334
750
0.75
0.00075
751
470000
470
0.47
474
820
0.82
0.00082
821
680000
680
0.68
684
1000
1.0
0.001
102
1000000
1000
1.0
105
1500
1.5
0.0015
152
1500000
1500
1.5
155
2000
2.0
0.002
202
2000000
2000
2.0
205
2200
2.2
0.0022
222
2200000
2200
2.2
225
3300
3.3
0.0033
332
3300000
3300
3.3
335