REPAIRING AND NOT THROWING AWAY

Richtige Fernseher haben Röhren!

Richtige Fernseher haben Röhren!

In Brief: On this site you will find pictures and technical information about Service Modes, Circuit Diagrams, Firmware Update procedure, Disassemble procedure, Universal remote control set-up codes, Troubleshooting and more....

If you go into the profession, you will obtain or have access to a variety of tech tips databases HERE IT IS Master Electronics Repair !.

These are an excellent investment where the saying: 'time-is-money' rules. However, to learn, you need to develop a general troubleshooting approach - a logical, methodical, method of narrowing down the problem. A tech tip database might suggest: 'Replace C536' for a particular symptom. This is good advice for a specific problem on one model. However, what you really want to understand is why C536 was the cause and how to pinpoint the culprit in general even if you don't have a service manual or schematic and your tech tip database doesn't have an entry for your sick TV or VCR.

While schematics are nice, you won't always have them or be able to justify the purchase for a one-of repair. Therefore, in many cases, some reverse engineering will be necessary. The time will be well spent since even if you don't see another instance of the same model in your entire lifetime, you will have learned something in the process that can be applied to other equipment problems.
As always, when you get stuck, checking out a tech-tips database may quickly identify your problem and solution.In that case, you can greatly simplify your troubleshooting or at least confirm a diagnosis before ordering parts.

Happy repairing!
Today, the West is headed for the abyss. For the ultimate fate of our disposable society is for that society itself to be disposed of. And this will happen sooner, rather than later.

How to use the site:

- If you landed here via any Search Engine, you will get what you searched for and you can search more using the search this blog feature provided by Google. You can visit more posts scrolling the left blog archive of all posts of the month/year,
or you can click on the main photo-page to start from the main page. Doing so it starts from the most recent post to the older post simple clicking on the Older Post button on the bottom of each page after reading , post after post.

You can even visit all posts, time to time, when reaching the bottom end of each page and click on the Older Post button.

- If you arrived here at the main page via bookmark you can visit all the site scrolling the left blog archive of all posts of the month/year pointing were you want , or more simple You can even visit all blog posts, from newer to older, clicking at the end of each bottom page on the Older Post button.
So you can see all the blog/site content surfing all pages in it.

- The search this blog feature provided by Google is a real search engine. If you're pointing particular things it will search IT for you; or you can place a brand name in the search query at your choice and visit all results page by page. It's useful since the content of the site is very large.

Note that if you don't find what you searched for, try it after a period of time; the site is a never ending job !

..............The bitterness of poor quality is remembered long after the sweetness of todays funny gadgets low price has faded from memory........ . . . . . .....
Don't forget the past, the end of the world is upon us! Pretty soon it will all turn to dust!

©2010, 2011, 2012, 2013, 2014 Frank Sharp - You do not have permission to copy photos and words from this blog, and any content may be never used it for auctions or commercial purposes, however feel free to post anything you see here with a courtesy link back, btw a link to the original post here , is mandatory.
All posts are presented here for informative, historical and educative purposes as applicable within fair use. NOTHING HERE IS FOR SALE !

Wednesday 6 March 2019

SAMSUNG UE32D4000 POWER SUPPLY - BN 44-00421A - FAULT FINDING - SCHEMATIC DIAGRAM - FUSE BLOWING - USING IC FAN7602 - TF12N65 - LED TELEVISION REPAIR AND SERVICE

Samsung UE32D4000 POWER SUPPLY - BN 44-00421A - fault finding - Schematic diagram - Fuse blowing - Using IC FAN7602 - TF12N65 - Led television repair and service

Category: LED Television Repair and service 


Contents of this article 

  • Power supply schematic 
  • LED driver Schematic
  • Troubleshooting 

Samsung UE32D4000

Troublshooting 
Fuse blowing:
If the fuse is blowing of continuously then check the flowing components 
MOV VX801s – If it’s found short then replace it 
Bridge rectifier BD810 – Check is any one of the diode is short or not 
Check the IGBT TF12N65 For any short if found short replace it  
Replace ICM801 FAN 7602
ABOUT FAN7602 PWM Controller
The FAN7602 is a green current mode PWM controller. It is specially designed for off-line adapter application, DVDP, VCR, LCD monitor application, and auxiliary power supplies. The internal high-voltage start-up switch and the burstmode operation reduce the power loss in standby mode. Because of the internal start-up switch and the burst mode, it is possible to supply 0.5W load, limiting the input power to under 1W when the input line voltage is 265V AC. On no-load condition, the input power is under 0.3W. The maximum power can be limited constantly, regardless of the line voltage change, using the power limit function. The switching frequency is internally fixed at 65kHz and the frequency modulation technique reduces EMI. The FAN7602 includes various protections for the system reliability and the internal soft-start prevents the output voltage overshoot at start-up.
1 LUVP  - Line Under-Voltage Protection Pin. This pin is used to protect the set when the input voltage is lower than the rated input voltage range.
2 Latch/Plimit  - Latch Protection and Power Limit Pin. When the pin voltage exceeds 4V, the latch protection works. The latch protection is reset when the VCC voltage is lower than 5V. For the power limit function, the Over-Current Protection (OCP) level decreases as the pin voltage increases.
3 CS/FB - Current Sense and Feedback Pin. This pin is used to sense the MOSFET current
for the current mode PWM and OCP. The output voltage feedback information and
the current sense information are added using an external RC filter.
4 GND - Ground Pin. This pin is used for the ground potential of all the pins. For proper oper ation, the signal ground and the power ground should be separated.
5 OUT - Gate Drive Output Pin. This pin is an output pin to drive an external MOSFET. The peak sourcing current is 450mA and the peak sinking current is 600mA. For proper operation, the stray inductance in the gate driving path must be minimized.
6 V CC Supply - Voltage Pin. IC operating current and MOSFET driving current are supplied using this pin.
7 NC - No Connection.
8 Vstr  - Start-up Pin. This pin is used to supply IC operating current during IC start-up. After start-up, the internal JFET is turned off to reduce power loss.
SMPS NOTES
D.C. to DC convertor and DC to AC converter belong to the category of switched mode power supply (SMPS). The various types of voltage regulator used in linear power supplies (LPS), fall in the category of dissipative regulator, as they have a voltage control element usually transistor or zener diode which dissipates power equal to the voltage difference between an unregulated input voltage and a fixed supply voltage multiplied by the current flowing through it. The switching regulator acts as a continuously variable power converter and hence its efficiency is negligibly affected by the voltage difference. hence the switching regulator is also known as “non-dissipative regulator” in a SMPS, The input DC supply is chopped at a higher frequency around 15 to 50KHz using an active device like the BJT power MOSFET or SCR and the convertor transformer There are three basic switch regulators 1.Step down or buck switching regulators. 2.Step up or boost switching regulator. 3.Inverting type switching regulator
COMMON LED DRIVE WORKING
There are large arrays of LEDs located behind the LCD panel in a typical LCD TV LED. In this array are a large number of parallel channels of LEDs connected in series depending on the size of the TV and the type of backlighting, for example edge backlighting (less LEDs but more in series) or direct backlighting (more LEDs in parallel) . The LED voltage (VLED) is provided by the White LED Backlight Driver Board to each LED channel and is regulated to a level needed by the highest voltage required to maximize the light output of each LED string . Depending upon the power supply requirements determined by the number of LEDs in the string or grouping of parallel LED strings, the up-stream power source for the LED backlight driver board may be a DC/DC step-up boost converter, a DC/DC step-down converter or more commonly an AC/DC converter . In the case where supply voltage is lower than the required VLED, a step-up boost converter will be used . As an example, a LED boost converter LED backlighting system will be described in detail in this paper for a direct backlighting application, however the theory of operation will also apply to both the step-down converter and AC/DC converter situation .
High brightness LEDs used in LCD backlighting require high LED current which also equates to higher LED forward voltage . For example, if a user wants to set the LED current to 80mA maximum, a minimum of 3 .65V forward voltage must be provided to each LED in the string . If the power supply can only provide 3 .6V to each LED, then the maximum LED current is limited to 74mA .
POWER SUPPLY SCHEMATICS 

LED DRIVER SCHEMATIC 
CLICK ON THE IMAGES TO ZOOM IN